L2Code: An Author Environment to Integrate Multiple
Intelligences and Naive Bayesian Classifiers for
MultiParadigm-Programming Training

M. L. Barron-Estrada, Ramon Zatarain-Cabada, J. Moises Osorio-Velazquez, L.
Zepeda-Sanchez, and Carlos A. Reyes-Garcia *

Instituto Tecnologico de Culiacan, Juan de Dios Batiz s/n Col. Guadalupe, C.P. 88220
Culiacén, México, tel. +52 667 7131796
rzatarain@itculiacan.edu.mx
* Instituto Nacional de Astrofisica, Optica y Electrénica (INAOE)
Luis Enrique Erro No. 1, Sta. Ma. Tonanzintla, Puebla, 72840, México
kargaxxi@inaoep.mx

Abstract. L2Code is an Intelligent Tutoring System used for teaching
programming courses for different paradigms. It is designed to work with
diverse types of modules oriented to certain ways of learning using principles of
Multiple Intelligences. The learning modules can be elaborated easily by any
person who teaches some topic of programming. The predictive engine uses a
Naive Bayes classifier which operates in real time with the knowledge of the
historical performance of the student. Results of studies show that learning
characteristics can be modeled using a scheme of learning with the correct
election of the attributes, establishing for that reason the primary target of
L2Code.

1 Introduction

Learning a programming language is in general considered a hard task, and
programming courses often have high abandon rates. It has even been recognized, that
it takes about 10 years for a beginner to become an expert programmer [l].
Educational research has been made to distinguish the characteristics of beginner
programmers and to study the learning process and its associations to the different
aspects of programming [2, 3]. Lately also differences between procedural and object-
oriented education approaches have been studied, as Java and C++ have become
common educational languages [4]. Milne and Rowe [5] studied in a recent survey the
difficulties of Object oriented programming by performing a web-based survey for
both students and teachers.

In a.ddition, today many students study programming languages by using distance
educa.tlon where they can access many tutorials in the subject. The problem of this
technique of learning is the lack of an actual tutor who, according to the
characteristics of the student, illustrates the learning material in a comprehensible
style. In order to solve the problem, much research has been conducted by proposing

© A. Gelbukh, A. Kuri (Eds.) Received 19/06/07
Advances in Artificial Intelligence and Applications Accepted 31/08/07
Research in Computer Science 32, 2007, pp. 406416 Final version 30/09/07

L2Code: An Author Environment to Integrate Multiple Intelligences... 407

using Intelligent Tutoring System (ITS) for teaching programming [6, 7, 8, 9].
However all of these works are focused on introductory programming material or are
oriented to one single paradigm or programming language.

Our proposal is an ITS designed to accept diverse types of programming language
paradigms oriented to different ways of learning by using the principles of Multiple
Intelligences [10]. This system, named L2Code, can dynamically identify the learning
characteristics of the student [11] and provide him the learning or study material
according to his type of intelligence. The different programming modules can be
conveniently produced by any instructor who wants to teach some programming
topic. It is only necessary to specify which resources refer to which types of student
intelligences, and which evaluation will be part of the different modules of the ITS.
This is necessary in order to measure the student performance and to improve the
prediction of the best learning resource. A predictive engine for L2Code works with a
Naive Bayes classifier [12] which operates in real time with the knowledge of the
historical performance of the student.

The arrangement of the paper is as follows: In Section 2, we present the
architecture of L2Code describing each one of the module components. In Section 3,
we discuss the implementation of several important algorithms used in the software.
Some experimental results are shown in Section 4. Comparison to related work is
given in section 5 and conclusions are shown in Section 6.

2 Architecture of L2Code

The general architecture of the system (figure 1) includes a set of components that
allow modularization, scalability, and maintainability of the system.

(_“
Cancepts and
Leaming Units
:Client
Domain Presentation
Module Module
- Concepts - Awake
- Lequning units Predictive - Explain -
Engine - Reinforce
- Transfert
Pedagogical
Module
- Solution validation Erros s "
- Eiror detection - Brrors suppor
- Hints

Figure 1. General architecture of L2Code

408 M. L. Barron-Estrada, Ramon Zatarain-Cabada, J. Moises Osorio-Velazquez, et al.

The server is the one in charge to provide the complete course that comes to be a
package of different resources with its respective evaluations. The server is not more
than an abstract entity, since can be distributed in internet by a Web site, or directly
by the creator of the course.

The client contains the ITS. It has the following components:

e Domain Module. It is the one in charge to encapsulate the content of the course,
such as concepts and learning units with their respective resources.

e Presentation Module. It is the one that works with certain unit of learning, like
waking up the student, explaining some concepts, reinforcing the content or simply
transferring new knowledge.

e Pedagogical Module. It is the one in charge of the tutor, making functions such as
detecting errors in the answers of the student, and feed backing and guiding the
student towards the correct solution.

e Al Module. Fundamental part in the operation of the pedagogical module, since it
is the one that really detects the type of solution for the student, correct or
incorrect, therefore the pedagogical module only worries about the feedback
process.

e Predictive Engine. Its function is the one to calculate the probability that the
student has taken the correct course, according to its type of intelligence measured
in the degree of assimilation of the learning unit. With this calculation, the
predictive engine is able to predict which would have to be the following resource
that the student would have to take.

2.1 Layer Model Architecture

The layer model architecture of the system (figure 2) is defined with respect to the
system s‘calabillty and maintainability. This architecture define a series of interfaces
and services that are provided between each one of the layers.

Presentation LWe]come I [Content Evaluation Results
Busiriess Predigtive Web Al Evaluation
. Engine Browser Module Analysis
B kel |
I
Data JDOM Concepts Learning
(XML Manager) Units

Figure 2. Layer model architecture

L2Code: An Author Environment to Integrate Multiple Intelligences... 409

2.2 Learning Process in L2Code

The learning process in a module (figure 3) starts by describing basic information like
name, objectives, and previous and further knowledge of the module. Next, a
visualization of theoretical content is shown, and then a corresponding evaluation is
performed. In this process, there exist an assistant to the student on the solution of the
problems. And finally the results of the student are shown with a corresponding
feedback.

Welcome Theorical
(Description) Content

A

Evaluation

A 4

Results

v

Figure 3. Leaming process

2.3 Predictive Engine

As we defined previously, the predictive engine is the one in charge to calculate the
probability that a student corresponds to certain type of learning resource predicting
the ideal one that the student would have to attend.

The input of the engine is composed by the results of the evaluation done to the

student after the conclusion of a learning resource, and the attributes used for the
evaluation, obtaining as an output the learning type of the student. This way we can
indicate the appropriated resource for the student.

The following attributes have been chosen to reflect how the students use the

different resources:

Time (F, N, L). There is a range of time specified by the course creator. If the
student spent less time reading the question than the low limit then Time is F (fast);
if the time past the high limit then Time is L (long); otherwise Time is N (normal).
First choice (Yes, No). Yes if the student answer is the first one he/she chose, No
otherwise.

Question attempted (Yes, No). Yes if the student attempts to answer a question,
otherwise No.

Accuracy (0 .. 1). Measures the approximation of the student answer with respect
to the correct answer. This computation depends of the evaluation type defined by
the course creator.

After determining the probability of each question, the probability corresponding
to the module (resource type) is calculated considering the following attributes:
Time (F, N, L). There is a range of time specified by the course creator. If the
student spent less time reading the learning contents than the low limit then Time is
F (fast); if the time past the high limit then Time is L (long); otherwise’ Time is N
(normal).

Repeat (Yes, No). Yes if the student had already seen this resource, no otherwise.
Code value (0 .. 1). This value is defined by the course creator and says how much
percentage must be assigned to code questions.

410 M. L. Barron-Estrada, Ramon Zatarain-Cabada, J. Moises Osorio-Velazquez, et al.

o Intelligence (VL, LM, VS, MR). It defines the type of student intelligence.
According to Gardner theory [10] there are seven intelligences. We manage four of
them: Verbal/Linguistic, ~ Logical/Mathematical, Visual/Spatial ~ and
Musical/Rhythmic.

3 Implementation

The development of the system was made by following a cascade model with a
modular development under the UML language [13, 14]. The system was
implemented with the Java™ language [15]. L2Code makes use of two external
packages that are: JDOM [16] for the XML reading and writing and SWT (Standard
Widget Toolkit) [17] for the creation of natives graphical interfaces allowing all of
this the multiplatform facility provided by Java™,

3.1 Naive Bayes Classifier

This algorithm (figure 4) is in charge of the probabilistic calculations to be able to
make the prediction of the ideal learning resource for the student. During the
interaction of the student with the learning module the attributes of this interaction are
registered and, when finishing it, the corresponding probability of the actual learning
resource is updated.

{;uring learning unit LU, identify values for attributes a, .. a, J

Sgs

At the end of learning unit LUy
e For each class value v, create instance Insty;
o Update student’s stadistics with Y- Insty;

L

(At the start of LUy, make V,,4 prediction on preferred resource]

Figure 4. Naive Bayes classifier algorithm

3.2 Evaluation Algorithms

In the process of evaluation of the learning module we define four different
evaluations:

e Multiple Options. It offers a series of possible answers, where only one
answer is correct.

L2Code: An Author Environment to Integrate Multiple Intelligences... 411

® Keywords. Here we evaluate the answer of the student based on the amount
of correct keywords that the answer contains. The algorithm is explained in

figure 5.
L Student answer J

55)
(For each keyword Wi in the student answer a search is

made in the correct answer

gt

A percentile of the number of matched keywords between
student and correct answers is determined. If this number is
higher than a defined limit then the answer is valid,

Figure 5. Evaluation with keywords

e Edit Distance. This is also for free answers from the student, but the
evaluation method is oriented to a minimum number of characters that must
be eliminated, inserted or interchanged so the answer of the student is
identical to the correct answer. This is illustrated in figure 6.

[Student answer j

For each character Ci from the student answer it is
calculated the cost of removing, inserting or changing
characters to be equals to correct answer.

iy}

. The minimum cost is calculated from the above
operations If the percentile reached from the answer length
divided for that minimum cost is not greater than the limit

then the student answer is valid.

Figure 6. Evaluation with edit distance algorithm

412 M. L. Barron-Estrada, Ramon Zatarain-Cabada, J. Moises Osorio- Velazquez, et al.

e Practice Evaluation (Code Problem). This type of evaluation (see figure 7)
was implemented to evaluate code and to provide hints to the student
throughout its development and, at the end, a feedback of its answer.

r Student answeﬂ

i is verified that the student answer a; isin
the correct answers set A (a; € Ac)

iy

If the student answer belongs to the correct
answer set the answer is valid, if it is not, itis
searched in the incorrect answers set and itis

chosen the most likely answer following the edit
distance algorithm
_

Figure 7. Algorithm for practice evaluation (code problem)

4 Experimental Results

When the student makes the election of his/her first learning module the result of the
predictive engine is undecidable, since there has been no interaction with the system.

We will present an example of a student interaction with the system in a course of
object-oriented programming in Java, where the student is taking the module of
classes and objects.

In the Welcome section of L2Code, initial information of the learning module like
objectives, description of the learning material, etc. is shown, as well as the types of
presentation available.

After the student has finished the content of the module, he/she needs to be
evaluated in some of the possible ways that we explained above.

When the student has finished attending one learning module and has been
evaluated, a probabilistic value is determined and used for the prediction of the type
of intelligence. In order to be able of comparing the final calculation with the rest of
the other learning resources and to determine the appropriate resource for the student,
this probabilistic value is stored and merged with the rest of the calculations made to
the learning resources of the same type.

Table 1 gives an example of a student using L2Code.

L2Code: An Author Environment to Integrate Multiple Intelligences... 413

Table 1. Student interaction

Student answer Response time
methods 10
Declaration and body 35

constructor 10

True 80

10 20

name body arguments 80

new 25

usr = new User() 100

The interaction was in a module with Visual/S

patial intelligence type and
characteristics shown in table 2.

Table 2. Module evaluation characteristics

Correct answer Evaluation type Normal time | Long time | Min. accuracy
method Edit distance 15 60 80
Declaration body | Multiple options 10 60 100
constructor Edit distance 15 60 80

False Multiple options 10 30 100

{} Multiple options 10 30 100

Return name Keywords 15 60 75

new Keywords 10 30 100

usr = new User(); | Code problem 30 300 100

In table 3 we show the results of the student interaction (probabilistic calculations).

Table 3. Probabilistics results for student interaction

Accuracy Probability
83 0.83

100 0.90

100 1.00

0 0

0 0

75 0.60

100 0.90

94 0.85

As this learning module had assigned a 20% to the practical evaluations (this is
designed by the module creator), the probability that this resource has facilitated the
learning to the student is of 0.65. This value later is added to the calculations done to
other resources of the same type. Thus, at the beginning of another resource, the
probabilities can determine that the student belongs to certain characteristics of
learning.

414 M. L. Barron-Estrada, Ramon Zatarain-Cabada, J. Moises Osorio-Velazquez, et al.

In the end, the results of the student evaluation are shown. It is necessary to
indicate that the result is different from the one used for calculating the learning type.
Also the student will have the possibility of seeing his/her answers and compare them

with the correct ones, in addition to receive feedback from the system.

Figure 8 presents the results for the student interaction in this running example.

=lolx|

[® el Classcs and obpects - Molses —Bipdests S Bl , g ~lolx]
Object-oriented programming in Java
Classes and objects
Student
Moises Osorio - [Moises]
Evaiuation
35,71 %
; B et one B Bast [¥oetal
W] Create an obfect User vith the defaut constructor storing & i the variable us.
2 ? Fundamantal parts of a dass defintion Detal
Your solution:
3 v Especiic type of method that have the class’ name Detai User ust;
ust = new User()
4 x Java don't give you & defauk constructor. Detal I &
5 x The dlass' body is enclose by °°‘°'| Good work, next time be carefull wth statements' end
Correct solutions:
6 v Fundamentals parts of a method Mdl b
ust = new User();
7 v Operator that creates &n object WI _<_l
8 x Create an object User with the defauk constructor storing R in the variablo ust. m‘

Figure 8, Evaluation results

5 Related Work

A series of research work in this area has been developed for several years;
nevertheless all of them are oriented for teaching a single programming language and
most of the times for introductory courses. One of them is ITEM/IP [7] an ITS for
teaching programming. ITEM/IP is only oriented to provide an introductory course to
Turingal (programming language). Another ITS is GREATERP [8] which is based on
Anderson’s theory of learning and oriented for teaching the LISP language. Last, a
system named BITS [9] which is also oriented for teaching only one programming

language.

L2Code: An Author Environment to Integrate Multiple Intelligences... 415

As we can see, one main difference between those other systems with respect to
L2Code is that they are oriented to just one programming language. Besides, the
exactitude of the student answers depends of just one programming lan L;a e
whereas L2Code looks for the degree of exactitude of the answer within agsetg f
correct answers defined by the creator of the learning module. That is the main rea .
why L2Code does not need to specify a programming language or an exact soluts-on
but a set of answers that must be validated like correct and another set of answe tlhon
must be validated like incorrect allowing identifying the correct feedback e
student. Aoketotile

6 Conclusions

In this paper an ITS named L2Code was described. The system predicts the b
learning resources for the students. The learning modules are a set of feat e best
describe when the learning resource must be presented to the student. On e‘r’lies that
particular unit, the learning scheme predicts which resource the student- should #hufly
Currently some empirical studies are taking place to analyze the rea tl'se.
students to the predictive engine in L2Code. This study is examining inst:l‘(t)p of
strategies due to the relationship between them and the learning performance ctional
Future work involves development of a user-friendly interface to creat.e
and further analysis in order to identify the relevance of different features Othgourses
will involve generalizing the adaptive engine to use different categories. of le;:l?;lg(

resources.

References

1. Soloway, E. & Spohrer, J. (1989). Studying th i
Associa}t,es, Hillsdzle, New Jc(arsey.)497 p.y i e Dovice “memnm Lopren ool

2. Barr, M., Holden, S., Phillips, D. & Greening, T. (1999). An exploration of novice
programming errors in an object-oriented environment, SIGCSE Bulletin, 31(4), pp. 42-46

3. Deek, F., Klmmel, H. & McHugh, J. (1998). Pedagogical changes in the deiivery of tl'1e
first-course in - computer science: Problem solving, then programming. Journal of
Engineering Education, 87, pp. 313-320.

4. Wiedenbeck, S., Ramalingam, V., Sarasamma, S. & Corritore C. (1999). A comparison of
the comprehension of object-oriented and procedural programs by novice programmers
Interacting with Computers, 11(3), pp. 255-282. :

5. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B., Laxer, C.
Thomas, L., Utting, I. & Wilusz, T. (2001). A multi-national, multi-institutional study of
alzszs;slsg(l)ent of programming skills of first-year CS students, SIGCSE Bulletin, 33(4), pp.

6. Edward R. Sykes, Franya Franek: Web-Based Architecture of an Intelligent Tutoring
System for Remote Students Learning to Program Java,

7. P. L. Brusilovsky: Intelligent Tutor, Environment and Manual for Introductory

Programming

416 M L. Barron-Estrada, Ramon Zatarain-Cabada, J. Moises Osorio-Velazquez, et al.

8. Brian Reiser, John Anderson, Robert Farrell: Dynamic Student Modeling in an Intelligent
Tutor for LISP Programming

9. C.J. Butz, S. Hua, R. B. Maguire: A Web-Based intelligent Tutoring System for Computer
Programming

10.Howard Gardner: Theory of Multiple Intelligences. _

11.Declan Kelly, Brendan Tangney: Predicting Learning Characteristics in a Multiple
Intelligence Based Tutoring System.

12.Markus Lang: Implementation of Naive Bayesian Classifiers in Java.

13.Adolfo Duran, Ana Cavalcanti, Augusto Sampaio: Formal Methods and Software
Enginnering

14.Robert Cecil Martin: UML for Java Programmers

15.Gosling, Joy, Steele, Bracha: The Java™ Language Specification

16.Jason Hunter, Brett McLaughlin: JDOM™ Project, http://www.jdom.org

17.Eclipse Foundation: SWT (Standard Widget Toolkit), http://www.eclipse.org/swt

Intelligent Biomedical Applications
%

